PMPM research group studies the physics of heterogeneous materials and develops efficient and robust numerical algorithms through integration of Computational Statistics and Data Science to reliably capture hydro-chemo-mechanical behaviour of a wide variety of heterogeneous materials that exhibit significant randomness.
The research goal is to investigate and understand the relationship between pore structure and macro-scale properties. We also develop new purpose-built experimental systems to model and quantify complex (micro- to macro-scale) behaviour of the materials and generate data for verification of the computational algorithms.
Our research is highly multi-disciplinary and motivated by applications in integrity assessment of safety structures (e.g. nuclear energy and waste disposal systems, carbon capture and storage systems, flood embankments), environmental risk analysis (e.g., surface and ground water quality modelling), geotechnics (e.g., injection of Geopolymer resin for ground improvement) and petroleum geomechanics (e.g., shale rock characterisation and hydraulic fracturing modelling). Currently collaborate with mathematicians, environmentalist, hydrologists and geotechnical engineers.